Q1 はんだ付け後の外観ではんだ割れの危険性のある個所を予測できないでしょうか?

 

1.観察のポイント

フラックス残渣は力に対してはんだより敏感に反応します。フィレットのはんだは金属ですが、粘土のような性質があるので、力が作用して少々伸びても変形は観察できません。ところがこれに密着したフラックス残渣は軟化温度より低温ではほとんど伸びません。

したがって、はんだのわずかな伸びに対して追従することができず、簡単にクラックの発生につながります。

写真aはQFPのはんだ付け部で発生したフラックス残渣のクラックで、右から2番目のリードに顕著に出ています。この箇所を側面から観察したのが写真bになりますが、リードが浮いた状態が確認できます。

写真cはQFPのリードの端の近辺です。この写真の右端と4番目とを比較すると、右端ほどフラックス残渣のクラックの程度はきつくなっています。フラックス残渣のクラックの発生の位置は3番目と4番目に興味ある現象が顕著に出ています。それはリードのかかと部のクラックが著しいという点です。これはリードのはんだ付け部ではフィレットのかかとから力が作用し、この部分で変形を来しているという事実です。

 

 

 

2.原因と発生

では、なぜここでこのような力が作用するかになります。 QFPの樹脂に内在した力がリフロー炉の中で開放し、それが市場でさらに長い期間を経て開放したことによります。

これを解析するには中性子ラジオグラフィーの手法で、QFPの製造時の金型に侵入して行く樹脂の挙動を解析しなければ分かりません。 TSOPのリードのはんだ割れが多いのは、金型の薄い空間を樹脂が圧入される時の挙動(金型と樹脂の界面で発生する摩擦)がQFPより一層不確定なためと考えます。

参考までに写真dはポリエステル樹脂の内部空洞で、この組織からしても空洞部周辺の樹脂が収縮した状態を示しています。したがって、圧力で成形された樹脂及びその中の密閉空間は、膨張しようとする力をもっていることが容易に分かります。圧力の高い樹脂の一部或いは空間がリフロー炉で膨張してもおかしくありません。薄い空間に粘性の高い樹脂をきちんと入れる場合、他のどこよりも角の部分は強い力が必要となります。このような理由でパッケージの角は暴れやすく動きやすい状態にあるので、この箇所がはんだ割れに敏感になります。

写真eはパッケージ内部の空洞です。

写真fもパッケージ内部で発生したクラックです。

写真9は電解コンデンサの底部の樹脂のクラック群です。

写真hは微小ですが、矢印に示した箇所で気泡跡が確認できます。

このように、パッケージ樹脂の内部に欠陥があると、はんだ付け部に作用してはんだ割れの原因となります。写真i、jはパッケージ樹脂が原因で発生した割れです。

3.対策

はんだ量が少ないのもはんだ割れを加速したことになります。リフローソルダリング後は写真i、jで示した箇所のはんだ付け部は、これらの箇所を重点的に検査しはんだ量が少ない場合は追いはんだをして補強します。また、設計に際してはパッドの面積を大きく取ってはんだ量を増し、強度を確保しなければなりません。

カテゴリー: リフローはんだ付け編Q1-5   パーマリンク

コメントをどうぞ

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

*

次のHTML タグと属性が使えます: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>